
Multimodal Sarcasm Detection Based on MUStARD Dataset

Yufei Wang Zhen Huang Mona Gandhi Haoxin Chen

Abstract

In the domain of natural langauge processing,
sentiment analysis is often used to compre-
hend people’s subjective view. However, such
analysis often does not incorporate sarcasm de-
tection, making the comprehension task diffi-
cult. As such, the capacity to recognize sar-
casm is essential to appropriately interpret peo-
ple’s genuine purpose. According to the pub-
lished study (Castro et al., 2019), several sar-
casm detection models have been created in
the past. In this term project, we intend to in-
crease the accuracy of binary classification of
sarcasm detection via attention based LSTM
model on the MUStARD dataset, which cap-
tures the textual, audio, and video attributes
around a sarcastic scenario. Our model is able
to surpass the performance of model presented
in Castro et al (2019), achieving 0.7027 on the
F1-score.

1 Introduction

Sarcasm is a frequently used expression that is
often employed in the context of making jokes,
showing scorn, and delivering critiques. Detect-
ing sarcasm might be a crucial problem for NLP
applications in the real world, such as marketing
research, opinion mining, and AI customer service.
From a linguistic standpoint, however, sarcasm lan-
guages are drastically distinct from typical jokes
and criticism in that they convey pleasant emotions
in a negative context. Without verbal or visual
clues, it is difficult for computers to identify sar-
casm or not.
In this project, we use both verbal cues and non-
verbal cues, such as tones of speech and facial
expression, in order to perform a binary classifica-
tion task on determining whether a given sentence
and its corresponding non-verbal cues are sarcasm
or not. In particular, we make use of the MUS-
tARD dataset that was developed by Castro et al

(2019). The data were obtained from YouTube and
the MELD dataset, both of which include several
episodes of famous television shows, such as Shel-
don from ”The Big Bang Theory” and Chandler
from ”Friends” are responsible for most of the caus-
tic comments.
The picture in Figure 1 is a great example of sar-
castic utterance from Friends, which consists of
text, audio, and video frames. The background of
this conversation was that someone stole Rachel’s
credit card and used it for online shopping for mul-
tiple times. Joey was asking if she call the police
after Rachel figured out who the stealer was. How-
ever, Rachel’s reaction was that she took the stealer
to lunch. The sarcastic utterance was from Chan-
dler said Rachel has her own brand of vigilante
justice which satirize how Rachel treat someone
who steal her credit card is totally insane and ridicu-
lous in reality.
For this term project, the inputs of our model are
the video frame, the audio of the sentences, and
the text of the phrases, and the output is a clas-
sification result indicating whether sarcasm was
present or not. The overall tasks of this project
not only combinate the knowledge, homework, and
quiz that we learned throughout the semester, such
as sentiment analysis, semantic role labelling, etc.,
but also extend some unknown field for us to ex-
plore. This project is challenged but valuable; our
group believe this project would be the best prac-
tice to applied what we learned into the real-world
problems.

2 Literature Review

2.1 Previous work on MUStARD Dataset

The MUStARD Dataset we utilized for this term
project was proposed in Santiago Castro’s pa-
per(Castro et al., 2019) on multimodal sarcasm
detection and the paper also performed feature ex-



Figure 1: Sample sarcastic utterance in the dataset along with its context and transcript

tractions and built a couple of standard machine
learning baselines for the classification task. For
text features, they used the average of the last four
transformer layers of the first token of the utter-
ance to create a 768-dimensional vector. For audio
features, they removed background noise and ex-
tracted local features using Librosa for each non-
overlapping window of this utterance and then took
the average over the windows. As for video fea-
tures, they first resized, center-cropped, and nor-
malized each frame in the video clip and then ran
it through a pretrained ResNet model to get a 2048-
dimensional vector representation and then took the
average across the frames of the entire clip. They
then performed a 5-fold cross validation evaluation
on three baseline models: Majority, Random, and
SVM. They discovered that the SVM with only the
text features and the audio features have the highest
F1-score of 0.631. We utilized the extracted fea-
tures provided by this paper when building models
for this project.

2.2 Neural Network usage in sarcasm
detection

Aside from traditional machine learning mod-
els used in the original paper of the MUStARD
Dataset, we decided to explore the utilization of
deep learning for sarcasm detection. Two novel
deep neural network models for sarcasm detection,
namely ACE 1 and ACE 2, in the paper(Babanejad
et al., 2020). Their models extend the architec-
ture of BERT by incorporating both affective and
contextual features. They directly alter the BERT
architecture and train it from scratch to build a
sarcasm classifier. They design and evaluate alter-
natives that materialize each of the two components
(affective feature embedding and contextual feature
embedding) of the proposed deep neural network
architecture model. They evaluate the proposed

models on datasets like Onion, Reddit and others
(with only textual data) to find that they signifi-
cantly outperform current state-of-the-art models
for sarcasm detection.

2.3 The correlation between textual and
visual features

The motivation of utilizing the cross-information
between textual and visual features in the cross-
model attention we built in our final neural network
started from Yen-Chun Chen’s paper(Chen et al.,
2019) on joint image-text embedding. The paper
introduces a large-scale pretrained model called
UNiversal Image-TExt Representation (UNITER)
for joint multimodal embedding. With the model
core being a transformer, the model (transformer)
was pre-trained on “masked Language Modeling
(MLM) conditioned on image; [three variants of
] Masked Region Modeling (MRM) conditioned
on text; Image-Text Matching (ITM); and Word-
Region Alignment (WRA).” MLM and MRM are
used to recover words or image regions. ITM is
used to align images and texts, and WRA is to
provide more fine grained alignment on top of it.
Specifically, the model takes a pair of image and
sentence, and it will first embed the image regions
with R-CNN and text tokens with BERT to a com-
mon embedding space; such embeddings will then
be applied to the transformer mentioned before to
obtain contextualized embeddings. The model was
trained on four Vision and Language datasets and
has achieved state of the art performance (that out-
performed many multimodal pre-training methods
at the time) when being evaluated on nine V+L
datasets.



3 Method

3.1 Dataset

3.1.1 Data overview
The MUStARD Dataset was collected from
YouTube and the MELD dataset that feature many
popular TV show clips by the authors of the Multi-
modal sarcasm detection paper (Castro et al., 2019).
Most of the sarcastic entries are from Sheldon from
TBBT and Chandler from Friends. It consists of
two major parts: a json file that contains all the
text file with the format shown in Figure 2 and
690 videos of the specific sentence (the utterance)
that we are classifying and the corresponding 690
slightly longer videos that contains the context of
the utterance.

Figure 2: Example of one entry in the json file

From Figure 2 we can see that the textual part of the
input data contains information about the character
who are engaged in the conversation context and
the speaker of the utterance specifically in addition
to the utterance itself and the context sentences.
The label of the utterance is under the key ”sar-
casm”. The Dataset is very balanced as it contains
a total of 345 utterances that are labeled as Sarcas-
tic (True), and the other 345 utterances are labeled
as Non-sarcastic (False). We split the data into
training 80% (552), development 10% (69), and
testing 10% (69) randomly.

3.1.2 Feature Extraction
To extract features that can be processed by models
from the raw texts and videos, we decided to follow
the methods that were utilized in the MUStARD
Dataset paper(Castro et al., 2019). However, due
to constraints of computing resources we currently
have, we ended up directly using the pre-extracted
features provided along with the Dataset.

• Text:
As stated in the previous literature review sec-
tion, for each utterance and each sentence in
the context, a [CLS] token was put in front of
the sentence and then the sentence is passed

into a pre-trained BERT model. The average
of the outputs of the last four transformer lay-
ers of the [CLS] token is calculated as the
embeddings of the corresponding sentence.
Thus, for each utterance sentence we have a
1-D vector of size 768 and for each context we
have a 2-D vector of size [number of sentences
in the contex] * 768. In this term project we
essentially utilized only the utterance BERT
embeddings for building our models.

• Audio:
Audio features are processed by Librosa to
extract local features across non-overlapping
window after removing background noise.
Each audio feature for the utterance is of dif-
ferent size due to the length of the sentence.
We then pad the audio features with 0 to the
maximum length in the certain batch of data
input.

• Visual:
For both the utterance videos and the context
videos, the frames were first resized with a
new height of 256 while keeping the ratio of
width and height unchanged, center-cropped,
and normalized. Then they were passed into
a pre-trained ResNet model which output a
2048-size vector.

3.1.3 Problem Formation
The problem we want to address in this term project
is essentially a binary classification of features ex-
tracted from three different types of input data.

3.2 Performance Metrics

Since the problem is essentially a binary classifi-
cation of sarcasm and not sarcasm, we chose ac-
curacy, precision, recall, and f-1 score as our four
major evaluation metrics. We employed the sklearn
functions for binary classification: accuracy score,
precision score, recall score, f1 score, for which
the input is the predicted value and the gold labels.
Specifically, when measuring the performance of
our models, because f-1 score is a harmonic mean
of precision and recall, we decided to use f-1 as a
metric to see our model’s performance.

3.3 Simple Baseline

3.3.1 Majority Class Baseline
The majority class baseline takes the majority class
label in the training data and predicts everything



Accuracy Precision Recall F1 score
Train 0.5036 1.0 0.5036 0.6699
Dev 0.4348 1.0 0.4348 0.6060
Test 0.4348 1.0 0.4348 0.6060

Table 1: Performance of Majority Class

Accuracy Precision Recall F1 score
Train 0.9674 0.9674 0.9674 0.9674
Dev 0.5429 0.5143 0.5454 0.5294
Test 0.6470 0.5588 0.6786 0.6129

Table 2: Performance of Logistic Regression

as that label. This baseline is meant to serve as an
indication of what kind of evaluation metric results
we can get by doing the minimum action more than
randomly guessing. Because the data consists of
equal number of entries labeled as sarcasm and not
sarcasm, the majority is determined by the random
seed that decides how the data are separated in
sklearn’s train test split function. As a result, the
accuracy of the majority baseline is close to 50%.
Precision of 1 indicates that the majority label in
the training data is sarcasm.

3.3.2 Logistic Regression

The original paper (Castro et al., 2019) utilized a
SVM model on the MUStARD dataset to perform
the classification using the extracted features, we
implemented logistic regression, a non-deep learn-
ing classification model, as another simple baseline.
However, the features for the available dataset are
multidimensional and that of varying sizes. For
simplicity, we picked the Bert embeddings of the
utterance texts as input, since it is normally served
as the input for monomodal sarcasm detection prob-
lems. For each sample, the embedding is a 768-
dimension vector. Because the number of features
vastly outnumbers the data instances, the model
overfits the data, as indicated by f-1 score of 0.96
for the training set, but only 0.53 and 0.61 for de-
velopment and test sets. Furthermore, we have
experimented with creating an ensemble classifier
that averages the probabilities of five logistic re-
gressions using the utterance text feature, utterance
video feature, context text feature, context video
feature, and the audio feature, the model severely
overfits, resulting in a f-1 score of 1 on the training
data.

Accuracy Precision Recall F1 score
Train 0.8025 0.8849 0.7616 0.8186
Dev 0.7246 0.8108 0.7142 0.7595
Test 0.6232 0.8000 0.5455 0.6486

Table 3: Performance of LSTM

4 Experiments and Results

4.1 Strong baseline

We trained an LSTM classifier for each of our fea-
tures for our strong baseline. We use three features
– BERT embeddings for utterance, embedding for
audio features and ResNet embeddings for utter-
ance video. After tuning, the structure of the LSTM
is as follows:

1. LSTM: A one layer, unidirectional LSTM
with a hidden dimension size of 300. A sepa-
rate LSTM of the same structure is applied to
each of the three features.

2. Concatenation: The output of each LSTMs
are concatenated together, creating a matrix
with 900 columns.

3. Fully connected layer 1: A fully connected
linear layer that maps the concatenated output
to size 300.

4. Activation: ReLU is used here.

5. Fully connected layer 2: A fully connected
linear layer that maps the input to size 1.

6. Sigmoid: A regular sigmoid function is used
to compute the probabilities of falling into the
sarcasm and not sarcasm categories.

Our task is binary classification, hence we use Bi-
nary Cross-Entropy Loss as the loss function and
Adam as the optimizer. We tuned the learning rate
to be 0.001 and the number of epochs to 15. We
saved the best model based on the f-1 score for
the development set from all the epochs and eval-
uated our test set only on the best model. We got
our best model at epoch 11. We observed a signif-
icant improvement on the development set but a
smaller improvement in the f-1 score on the test set.
The LSTM model has good precisions for all three:
train, development and test sets.

4.2 Extension

Since our main focus of this project is multimodal,
we decided to implement different kinds of cross-
model attention as our extensions. Cross-model



attention enables the LSTMs of different types of
features to gain more information about each other
and a weighted sum result based on the attention
scores can help the model to focus on the rele-
vant parts of the feature sequences. While it is
possible to compute all combinations of attention
and concatenate them with the LSTM output, our
limited data size put a constraint on the number
of parameters in our model (to avoid overfitting).
Thus, we implemented 4 different types of attention
that only perform attention on the textual feature
and the video feature. The attention scores are
calculated by combining the outputs of the LSTM
models, applying softmax to obtain the weights.
These weights are multiplied with the output of the
LSTM that takes in video features, which returns
a weighted sum of the video features. This is then
concatenated together along with the outputs from
the three LSTM models. Therefore, using the same
hidden size of 300, the concatenated result will
have size 1200. The final model structure is shown
in Figure 3.
The four methods of calculating attentions are
listed below

1. hidden out: Dot product of textual LSTM hid-
den states and video LSTM outputs

2. out out: Dot product of textual LSTM outputs
and video LSTM outputs

3. hidden hidden: Dot product of textual LSTM
hidden states and video LSTM hidden states

4. out out general: Dot product of textual LSTM
outputs after a matrix transformation (in the
form of a learnable fully connected layer) and
video LSTM outputs

Finally, we noticed that the criterion BCEWithLog-
itsLoss takes into account of the sigmoid. There-
fore, we switched the criterion from BCELoss to
BCEWithLogitsLoss and removed the final sigmoid
layer in the LSTM model.
Comparing the four attention mechanics as we
can see in Table 4, all but hidden hidden have
shown significant improvements in performance,
with out out achieving the highest f-1 score of
0.7027 on the test set, a 9% improvement compared
to the logistic regression and a 5% improvement
compared to the LSTM model without attention.
From Figure 4, we can see that hidden hidden over-
fits on the training data and hence performs poorly
on dev and test data. While none of the attention
types performs better than LSTM without attention

LSTM w/ Attention Accuracy Precision Recall F1 score
hidden out 0.6232 0.9667 0.5370 0.6905
out out 0.6812 0.8667 0.5909 0.7027
hidden hidden 0.6522 0.5667 0.6071 0.5862
out out general 0.7101 0.7000 0.6563 0.6774

Table 4: Test Set Performance of LSTM with Attention

Hyperparameter Value Accuracy Precision Recall F1 score

Learning rate

0.01 0.5362 1 0.5362 0.6981
0.001 0.6811 0.8648 0.653 0.7441
0.0005 0.6666 0.8648 0.64 0.7356
0.0001 0.6811 0.5405 0.8 0.6451

Hidden size

100 0.6521 0.8378 0.6326 0.7209
200 0.6086 0.5405 0.6666 0.597
300 0.6811 0.8648 0.653 0.7441
400 0.5797 0.4324 0.6666 0.5245

Batch size

8 0.5797 0.4324 0.6666 0.5245
16 0.5797 0.3783 0.7 0.4912
32 0.6811 0.8648 0.653 0.7441
64 0.6376 0.7567 0.6363 0.6913

Table 5: Different Hyperparameters tried on the Devel-
opment set to select the ones that gave the highest F1
score. For each hyperparameter tried, the other two are
kept constant.

on the dev set, other than hidden hidden, all the
attention types does better than all the baselines on
the test data.

4.3 Hyperparameter Selection
Refer Table 5, to see all the hyperparameters we
tried to get the best model. For tuning a given hy-
perparameter, we keep the others set to a constant
value, for example, for fine tuning the learning rate,
the hidden size was fixed to 300 and the batch size
to 32. We have used learning rate as 0.001, hidden
size as 300 and batch size as 32 for the experiments
and results.

4.4 Error Analysis
4.4.1 Quantitative Analysis
When evaluated on the Test set, the best model
LSTM with out out attention does very well on de-
tecting sarcasm for real sarcastic data, but performs
poorly in detecting non-sarcastic data apart from
sarcastic ones. As seen in Figure 5, there are more
false positives than true negatives, hence we can
conclude the model learns a bias towards labeling
data as sarcastic. We can be almost sure that when
the model predicts a data-point as non-sarcastic, it
would not be sarcastic. However, the reverse is not
true.

4.4.2 Qualitative Analysis
On conducting some qualitative Analysis, we find
that most of the data which was labeled as False
Positive had a common feature of the audio being



Figure 3: Model Architecture for LSTM with out out Attention

Figure 4: Comparing results for different Attention types implemented with LSTM for Train, Dev and Test datasets,
we can see that LSTM with all the attention types except for hidden hidden perform better than simple baselines
and LSTM without attention.

high pitched. We did not include speaker as a fea-
ture in our model as we figured out it would lead
to a bias in the model as some characters are more

likely to be sarcastic than others. However, the
model still picks some bias towards some charac-
ters (eg. Sheldon, Chandler). Many video clips



Figure 5: Confusion Matrix for the Best Model (LSTM
with out out attention) evaluated on the Test set

had a joke followed by a laugh which the model
wrongly labeled as sarcastic. Some of the test data
was very difficult to be recognised as sarcastic or
non-sarcastic just from the utterance, that is where
the context feature plays an important role. For
example, the speaker saying ”I am fine” and con-
text being that the speaker just found out his ex-
girlfriend is going on to date his friend, here we
could not have understood the sarcasm just from
the utterance at all. This is the cause for the two
False Negatives on the Test set.

5 Conclusions

Sarcasm detection is a practical problem that can
lead to multiple applications in the real world. In
this term project we mainly built a Multimodal
LSTM model with cross-model attention to per-
form the binary classification task and we are able
to reach a F1-score of 0.7027 on the testing set,
which is higher than the F1-score presented in
the published paper (Castro et al., 2019). Admit-
tedly, the MUStARD Dataset we used is not a large
Dataset, we are constrained by the limited data
when building the attention scheme of the final
model as well as when selecting the hyperparam-
eters that relate to the complexity of the LSTM
like hidden size. When performing hyperparame-
ter selection, we do observe that a hidden size of
400 lead to lower F1 score even than the Major-
ity class baseline. We expect to explore more on
cross-model attention scheme with more data.

6 Acknowledgements

We deeply thank our Mentor TA Artemis
Panagopoulou for all of her invaluable advice re-
garding baseline model selections and possible ex-
tensions we could work on. She was always able to
point us in the right direction and remind us about
practical problems like computing resources.

We also want to give credits to the authors of the
MUStARD Dataset as we have utilized their ex-
tracted features on the three different type of input
to avoid being limited by our restrained computing
resources.

References
Nastaran Babanejad, Heidar Davoudi, Aijun An, and

Manos Papagelis. 2020. Affective and contextual
embedding for sarcasm detection. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 225–243, Barcelona, Spain (On-
line). International Committee on Computational
Linguistics.

Santiago Castro, Devamanyu Hazarika, Verónica Pérez-
Rosas, Roger Zimmermann, Rada Mihalcea, and
Soujanya Poria. 2019. Towards multimodal sarcasm
detection (an Obviously perfect paper). In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4619–
4629, Florence, Italy. Association for Computational
Linguistics.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El
Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. 2019. Uniter: Universal image-text
representation learning.

https://doi.org/10.18653/v1/2020.coling-main.20
https://doi.org/10.18653/v1/2020.coling-main.20
https://doi.org/10.18653/v1/P19-1455
https://doi.org/10.18653/v1/P19-1455
https://doi.org/10.48550/ARXIV.1909.11740
https://doi.org/10.48550/ARXIV.1909.11740

