
Live Poets Society
Group 10

Mona Gandhi Nimay Kumar Rohan Saraogi Tom Huang
{mona09, nimay512, rsaraogi}@seas.upenn.edu zthuang@sas.upenn.edu

1. Introduction

In this project we have created a social cataloging
application specifically for poetry lovers. Our aim
was to make a platform that enables users to explore
the world of poetry through an extensive collection of
books, series, authors, and reviews.

The application is designed to offer a personal-
ized experience to each user. By signing in, users
can create and maintain their own virtual library
of poetry books, rate them, and receive custom
recommendations based on their past behaviour about
new poetry books that they might enjoy.

In addition to these features, the application also
seeks to encourage community engagement. This
is achieved by providing information about author
perceptions in the community, and highlighting the
most active members of the community, which allows
users to learn more about other members.

Overall, we hope the application can serve as a
valuable resource for poetry enthusiasts of all levels,
whether they are just starting out or are seasoned
experts.

2. Architecture

The application consists of a backend MySQL DB
Instance hosted on Amazon Relational Database
Service (Amazon RDS), and a React.js frontend.

In particular, the following is the list of technologies
used and their purposes:

1. Python: Data preprocessing

2. Amazon RDS MySQL DB Instance: Database

3. DataGrip: Writing/optimizing SQL queries

4. Node.js: Runtime environment for JavaScript
code

5. Express.js: Managing routes and communication
between the frontend and the database via REST-
ful APIs

6. React.js/Material-UI: Frontend design

7. GitHub: Version control and collaboration

3. Data

The data is from the Goodreads datasets scraped by
UCSD. We have used the subset of the datasets specific
to the poetry genre, and summarize each of datasets
below.

3.1. Poetry Books

Description: The dataset contains data for poetry
books, such as the book ID, title, description, authors,
series etc.
Summary Statistics: The dataset contains 36,514 rows,
29 columns, and has a memory usage of ∼102 MB.
Usage: The dataset serves as a primary link between
the datasets as it contains references to the book se-
ries and authors. We have used the dataset to reduce
the series and author datasets to the subsets specific
to the poetry genre, and to create the Book entities,
and the Similar Books, In Series, and Written By re-
lationships.

3.2. Series

Description: The dataset contains data for all book se-
ries (i.e. not only for the poetry genre), such as the
series ID, title, description etc.
Summary Statistics: The dataset contains 400,390
rows, 7 columns, and has a memory usage of ∼156
MB.
Usage: We have used the subset of the dataset specific
to the poetry genre to create the Series entities, and
the In Series and Series By relationships.

3.3. Poetry Interactions

Description: The dataset contains data for user inter-
actions with poetry books, such as the user ID, book

1

https://sites.google.com/eng.ucsd.edu/ucsdbookgraph/home
https://drive.google.com/uc?id=1H6xUV48D5sa2uSF_BusW-IBJ7PCQZTS1
https://drive.google.com/uc?id=1op8D4e5BaxU2JcPUgxM3ZqrodajryFBb
https://drive.google.com/uc?id=17G5_MeSWuhYnD4fGJMvKRSOlBqCCimxJ


ID, read at date, started at date etc.
Summary Statistics: The dataset contains 2,734,350
rows, 10 columns, and has a memory usage of ∼1543
MB.
Usage: We have used the dataset to create the User
entities, and the In Library relationships.

3.4. Poetry Reviews

Description: The dataset contains data for poetry book
reviews, such as the review ID, user ID of the reviewer,
book ID of the book reviewed, review text, rating, no.
of votes, no. of comments etc.
Summary Statistics: The dataset contains 154,555
rows, 11 columns, and has a memory usage of ∼176
MB.
Usage: We have used the dataset to create the Review
entities, and the Review By and Review For relation-
ships.

3.5. Authors

Description: The dataset contains data for all authors
(i.e. not only for the poetry genre), such as the author
ID, name etc.
Summary Statistics: The dataset contains 829,529
rows, 5 columns, and has a memory usage of ∼86 MB.
Usage: We have used the subset of the dataset specific
to the poetry genre to create the Author entities, and
the Written By and Series By relationships.

4. Database

4.1. Preprocessing

The preprocessing code is contained in the notebook
preprocessing.ipynb on GitHub. In no particular order,
the following is a list of some of the key steps in our
preprocessing:

• The raw data is in JSON format, containing em-
bedded documents and lists. To store the data
in a 1NF relational schema we have blown up the
documents and lists and split them into separate
relations.

• The books data contains URLs for book cover im-
ages, but ∼43% of the links are broken. We believe
that including the book cover images is essential to
the application’s aesthetics, and hence have writ-
ten a scraper to scrape missing book cover images
from Goodreads. This has been possible as the
books data also contains a column that links to
the Goodreads page of the book. Our scraper re-
trieves the Goodreads page HTMLs and parses the
book cover image links using XPath. After scrap-
ing, only two of the links are broken.

• We have subsetted the series and author data to
only include entries specific to the poetry genre.

• To avoid redundancy, we have removed duplicate
columns and columns with descriptive statistics
(which are derivable from the remaining data).
Regarding the latter, instead of storing the statis-
tics, we have written our own queries to display
the statistics as needed.

• Much of the data is in string format. Depending
on the column, we have handled quotes/whites-
paces in the strings, converted strings containing
numbers to the numeric format/datetimes to the
datetime format, and replaced empty strings with
null values.

• We have removed illogical values eg. a negative
no. of votes or comments for reviews.

• For users, the data only contains anonymized user
IDs. We have used the Python Faker library to
create dummy usernames, passwords, names, and
emails for the users.

• We have ensured that foreign key constraints are
met prior to ingestion into the database by man-
ually comparing the dataframe columns.

4.2. ER Diagram

The following figure shows the ER diagram.

Figure 1. ER Diagram

4.3. Relational Schema

The DDL code is contained in the file ddl.sql on
GitHub.

https://drive.google.com/uc?id=1FVD3LxJXRc5GrKm97LehLgVGbRfF9TyO
https://drive.google.com/uc?id=19cdwyXwfXx_HDIgxXaHzH0mrx8nMyLvC
https://faker.readthedocs.io/en/master/


The following is the relational schema:

Book (id, title, description, language code, edi-
tion, format, is ebook, isbn, isbn13, asin, kindle asin,
publisher, publish date, num pages, image url)
title NOT NULL

Similar Books (book id1, book id2)
book id1 FOREIGN KEY REFERENCES Book (id)
book id2 FOREIGN KEY REFERENCES Book (id)

Series (id, title, description, numbered)
title NOT NULL

In Series (book id, series id)
book id FOREIGN KEY REFERENCES Book (id)
series id FOREIGN KEY REFERENCES Series (id)

Author (id, name)
name NOT NULL

Written By (book id, author id)
book id FOREIGN KEY REFERENCES Book (id)
author id FOREIGN KEY REFERENCES Author (id)

Series By (series id, author id)
series id FOREIGN KEY REFERENCES Series (id)
author id FOREIGN KEY REFERENCES Author (id)

User (id, username, password, name, email)
username NOT NULL UNIQUE
password NOT NULL
name NOT NULL

In Library (user id, book id, date added, read at,
started at)
user id FOREIGN KEY REFERENCES User (id)
book id FOREIGN KEY REFERENCES Book (id)

Review (id, user id, book id, text, rating, num votes,
num comments)
user id FOREIGN KEY REFERENCES User (id)
book id FOREIGN KEY REFERENCES Book (id)
(user id, book id) NOT NULL UNIQUE
num votes NOT NULL
num comments NOT NULL

4.4. Relation Sizes

The following table shows the relation names and sizes
in the database.

Relation Cardinality
Book 36,512

Similar Books 271,478
Series 613

In Series 1,469
Author 23,104

Written By 57,972
Series By 2,094

User 377,799
In Library 2,734,332
Review 154,552

Table 1. Relation Sizes

4.5. Normal Form Usage & Justification

The database is in BCNF. This is because each func-
tional dependency is either trivial or the LHS of the
functional dependency is a superkey. In particular,

1. All attribute domains are simple (integers, strings,
booleans, datetimes) and none of them have rela-
tions as elements. Hence the database is in 1NF.

2. Each of the relations Similar Books, In Series,
Written By, and Series By have two attributes,
and the attributes together are the primary key.
Hence, denoting the two attributes as X and Y,
the only functional dependencies are trivial depen-
dencies i.e. {X, Y} → X, {X, Y} → Y, and {X,
Y} → {X, Y}.

3. Each of the Book, Series, Author, and In Library,
relations has one primary key and no alternate
keys, and the attributes are only dependent on the
primary key. Hence the respective minimal covers
of the set of functional dependencies only contains
dependencies of the form X → Y, where X is the
primary key and Y is any other attribute.

4. The User relation has a primary key id and an al-
ternate key username, and the attributes are only
dependent on the candidate keys. Likewise, the
Review relation has a primary key id and an al-
ternate key (user id, book id), and the attributes
are only dependent on the candidate keys. Hence
the minimal cover of the set of functional depen-
dencies in each case only contains dependencies of
the form X → Y, where X is a candidate key, and
Y is any other attribute.

5. Web Application Description

The application contains pages with different types
of functionality, such as login/register pages, a user
home page, pages to search by books/series/authors,



pages for book reviews, and a trending page with
more information about the community. We sum-
marize the functionality of the application pages below.

Login Page: The page allows existing users to
login with their usernames and passwords, and also
links to the register page for new users to sign up.

Register Page: The page allows new users to
sign up with their usernames (required), passwords
(required), names (required), and emails (optional).
Users can navigate back to the login page from here,
and successfully logging in will do that as well.

Home Page: The page shows users information
about their accounts. Every time the page is visited or
refreshed, a randomly selected ”book of the moment”
will be generated. The page contains a table of
all the books in the user’s library, and a list of 16
recommended books. The page also contains general
information about the user, such as the number of
books in their library, their average rating etc. Lastly,
there is a logout button and logging out redirects the
user to the login page.

Books Page: The books contains information
about books eg. title, format, publisher, and publish
date. Users can search by book titles and results are
limited to 2000 entries to avoid network overload.
Clicking on a book title will display a popup that
contains an image of the book, the author(s), no. of
pages, no. of reviews, average rating, as well as a
link to a page that contains all reviews for that book.
In addition, the popup will allow users to add/re-
move that book from their library, and if the book
is in their library, users can rate it and save that rating.

Authors Page: The authors page contains infor-
mation about all authors eg. name, number of works,
average rating etc. Users can search for authors by
their name.

Series Page: The series page contains informa-
tion about all series. Users can search for series by
their title. Also, when series is clicked, a popup shows
all the books in that series.

Trending Page: The trending page contains in-
formation about the top 15 most active (i.e. with
the most reviews) users. It also contains information
author perceptions in the community based on the no.
of users who dislike, are neutral towards, and like the
authors. Users can search for authors by their name.

Review Page: The review page is accessible via
each book information popup. It contains all the
reviews and ratings available for the selected book.

Empty Page: This is the page that will be shown to
users who access the site but are not logged in. It will
provide a link for users to login or sign up.

6. API Specification

We summarize the routes below (to save space, we
only mention route/query parameters if they are used).

Route: ’/user library/:user id’ (GET)
Description: Returns a user’s library information
Route Parameters: user id (str)
Response Type: JSON Array
Response Parameters: [{id (int), book title (str),
date added (datetime)}, . . . ]

Route: ’/user recommendations/:user id’ (GET)
Description: Returns 16 book recommendations a
given user hasn’t read
Route Parameters: user id (str)
Response Type: JSON Array
Response Parameters: [{book id (int), book title
(str), image url (str)}, . . . ]

Route: ’/user information/:user id’ (GET)
Description: Returns information about a user’s
reading habits
Route Parameters: user id (str)
Response Type: JSON Array (of length 1)
Response Parameters: [{id (str), user name (str),
num library (int), num ratings (int), avg rating (float),
num reviews (int), num votes (int), num comments
(int)}]

Route: ’/top reviewers’ (GET)
Description: Returns information about the top 15
users with the most reviews
Response Type: JSON Array
Response Parameters: [{id (str), user name (str),
num library (int), num ratings (int), avg rating (float),
num reviews (int), num votes (int), num comments
(int)}, . . . ]

Route: ’/series information/:series id’ (GET)
Description: Returns a series’ information
Route Parameters: series id (int)
Response Type: JSON Array (of length 1)
Response Parameters: [{title (str), description (str),
numbered (bool), num books (int)}]



Route: ’/series books/:series id’ (GET)
Description: Returns a series’ books
Route Parameters: series id (int)
Response Type: JSON Array
Response Parameters: [{id (int), title (str)}, . . . ]

Route: ’/search series’ (GET)
Description: Returns series filtered by titles
Query Parameters: title (str) (default: ’%’)
Response Type: JSON Array
Response Parameters: [{id (int), title (str)}, . . . ]

Route: ’/book information/:book id’ (GET)
Description: Returns a book’s information
Route Parameters: book id (int)
Response Type: JSON Array (of length 1)
Response Parameters: [{title (str), author name
(str), description (str), format (str), publisher (str),
publish date (date), num pages (int), num reviews
(int), avg rating (float), is ebook (int), isbn (str),
isbn13 (str), asin (str), kindle asin (str), image url
(str)}]

Route: ’/random book’ (GET)
Description: Returns a random book of the moment
Response Type: JSON Array (of length 1)
Response Parameters: [{id (int)}]

Route: ’/book reviews/:book id’ (GET)
Description: Returns a book’s review texts and ratings
Route Parameters: book id (int)
Response Type: JSON Array
Response Parameters: [{text (str), rating (int)}, . . . ]

Route: ’/book authors/:book id’ (GET)
Description: Returns a book’s authors
Route Parameters: book id (int)
Response Type: JSON Array
Response Parameters: [{id (int), name (str)}, . . . ]

Route: ’/search books’ (GET)
Description: Returns books filtered by titles
Query Parameters: title (str) (default: ’%’)
Response Type: JSON Array
Response Parameters: [{id (int), title (str), descrip-
tion (str), format (str), publisher (str), publish date
(date)}, . . . ]

Route: ’author LND statistics’ (GET)
Description: Returns user perceptions (like/neu-
tral/dislike) of authors based on their ratings
Response Type: JSON Array

Response Parameters: [{id (int), name (str),
num dislikes (int), num neutral (int), num likes
(int)}, ...]

Route: ’search authors’ (GET)
Description: Returns authors filtered by names
Query Parameters: author name (str) (default: ’%’)
Response Type: JSON Array
Response Parameters: [{id (int), author name (str),
num books (int), num reviews (int), num ratings (int),
avg rating (float), min rating (int), max rating (int)},
. . . ]

Route: ’add to library/:user id/:book id’ (POST)
Description: Adds a book to a user’s library
Route Parameters: user id (str), book id (int)
Response Type: int
Response Parameters: status code (int)

Route: ’remove from library/:user id/:book id’
(POST)
Description: Removes a book from a user’s library
Route Parameters: user id (str), book id (int)
Response Type: int
Response Parameters: status code (int)

Route: ’check in library/:user id/:book id’ (GET)
Description: Checks whether a book is in a user’s
library
Route Parameters: user id (str), book id (int)
Response Type: JSON Array (of length 1)
Response Parameters: [{user id (str)}]

Route: ’get rating/:user id/:book id’ (GET)
Description: Returns a user’s rating for a book
Route Parameters: user id (str), book id (int)
Response Type: JSON Array (of length 1)
Response Parameters: [{rating (int)}]

Route: ’update review/:user id/:book id/:rating’
(POST)
Description: Adds a rating for a book if not already
rated, and updates the rating otherwise
Route Parameters: user id (str), book id (int), rating
(int)
Response Type: int
Response Parameters: status code (int)

Route: ’/register user/:user name/:email/:password/:name’
(POST)
Description: Adds a new user
Route Parameters: user name (str), email (str),
password (str), name (str)



Response Type: int
Response Parameters: status code (int)

Route: ’handle login/:user name/:password’ (POST)
Description: Attempts to log a user in
Route Parameters: user name (str), password (str)
Response Type: int
Response Parameters: status code (int)

Route: ’/get user id/:user name’ (GET)
Description: Returns the id of a user with a given
username (used in login)
Route Parameters: user name (str)
Response Type: JSON Array (of length 1)
Response Parameters: [{id (str)}]

7. Queries

We provide descriptions and the SQL code for 5 of the
queries below. For the complex queries we provide op-
timized versions of the code (the unoptimized versions
can be found in the Appendix section).

7.1. Book Information

7.1.1 Description

The query returns metadata and summary statistics
(no. of reviews, average rating) for a given book. It is
used in the books page.

7.1.2 Query

WITH book trunc AS (
SELECT id,

title ,
description ,
format,
publisher ,
publish date,
num pages,
image url

FROM Book
WHERE id = ${book id}

)
SELECT B.title title,

B.description description ,
B.format format,
B.publisher publisher ,
B.publish date publish date,
B.num pages num pages,
COUNT(R.id) num reviews,
ROUND(AVG(R.rating), 1) avg rating,
B.image url image url

FROM book trunc B
JOIN Review R ON B.id = R.book id

GROUP BY B.id

7.2. Book Recommendations

7.2.1 Description

The query recommends 16 books on a user’s home page
that the user hasn’t read. In particular, for a given user
U, the recommendation algorithm

1. Finds authors with ≥ 4.0 average rating from U

2. Given these authors, finds other users who have an
average rating of 5 for at least one of the authors

3. Given these users, finds books in their library that
they have rated ≥ 4.0 and aren’t present in U’s
library

4. Returns 16 of these books

We note that it is possible for the query to return an
empty result for example if U doesn’t have any books
in their library with a high enough rating. To address
this, the query is part of an even larger query that
ensures that 16 books are returned by filling in the
blank spaces with the most reviewed books (across all
users). We believe this is reasonable as the most re-
viewed books are a meaningful surrogate for the most
popular books, and hence potentially enjoyable for U.
We only include the query capturing the essence of
the recommendation algorithm here and not the larger
query as it is split into multiple functions. It can be
found in the routes.js file on GitHub.

7.2.2 Query (Optimized)

WITH author user AS (
SELECT author id,

user id ,
AVG(rating) avg rating

FROM ABRU View
GROUP BY author id, user id

) , top authors AS (
SELECT author id
FROM author user
WHERE user id = ’${user id}’ AND

avg rating >= 4.0
) , similar users AS (

SELECT DISTINCT user id
FROM author user
WHERE user id != ’${user id}’ AND

author id IN (SELECT author id FROM
top authors) AND

avg rating = 5.0
) , similar users books AS (

SELECT DISTINCT R.book id book id
FROM Review R

JOIN similar users SU ON R.user id = SU.user id
WHERE rating >= 4.0 AND

R.book id NOT IN (
SELECT book id
FROM In Library
WHERE user id = ’${user id}’



)
LIMIT 16

)
SELECT B.id book id,

B. title book title ,
B.image url image url

FROM Book B
JOIN similar users books SUB ON B.id =

SUB.book id;

7.3. Author Perceptions

7.3.1 Description

For each author, the query performs a full outer join to
return the no. of users that like, are neutral towards,
and dislike the author. For a given author, we assume
that a user dislikes the author if their average rating
for the author is < 3, is neutral towards the author if
their average rating for the author is 3, and like the
author if their average rating for the author in > 3.
The query is used in the trending page as a measure of
authors’ community perceptions.

7.3.2 Query (Optimized)

WITH author user AS (
SELECT author id,

author name,
user id ,
AVG(rating) avg rating

FROM ABRU View
WHERE author name LIKE ’%${name}%’
GROUP BY author id, user id

) , dislikes AS (
SELECT author id,

author name,
COUNT(user id) num dislikes

FROM author user
WHERE avg rating < 3.0
GROUP BY author id, author name

) , neutral AS (
SELECT author id,

author name,
COUNT(user id) num neutral

FROM author user
WHERE avg rating = 3.0
GROUP BY author id, author name

) , likes AS (
SELECT author id,

author name,
COUNT(user id) num likes

FROM author user
WHERE avg rating > 3.0
GROUP BY author id, author name

) , DN AS (
SELECT D.author id,

D.author name,
num dislikes,
num neutral

FROM dislikes D
LEFT JOIN neutral N ON D.author id =

N.author id

UNION
SELECT N.author id,

N.author name,
num dislikes,
num neutral

FROM dislikes D
RIGHT JOIN neutral N ON D.author id =

N.author id
) , DNL AS (

SELECT DN.author id,
DN.author name,
num dislikes,
num neutral,
num likes

FROM DN
LEFT JOIN likes ON DN.author id =

likes.author id
UNION
SELECT likes.author id,

likes .author name,
num dislikes,
num neutral,
num likes

FROM DN
RIGHT JOIN likes ON DN.author id =

likes.author id
)
SELECT author id id,

author name name,
IFNULL(num dislikes, 0) num dislikes,
IFNULL(num neutral, 0) num neutral,
IFNULL(num likes, 0) num likes

FROM DNL

7.4. Author Statistics

7.4.1 Description

The query returns summary statistics about authors
such as their no. of books/reviews/ratings, and min/-
max/avg ratings. It is used in the author page to pro-
vide information about the authors.

7.4.2 Query (Optimized)

SELECT author id id,
author name,
COUNT(DISTINCT book id) num books,
COUNT(review id) num reviews,
COUNT(rating) num ratings,
ROUND(AVG(rating), 1) avg rating,
MIN(rating) min rating,
MAX(rating) max rating

FROM ABRU View
WHERE author name LIKE ’%${name}$%’
GROUP BY author id;

7.5. Top Reviewers

7.5.1 Description

The query returns information about the 15 top review-
ers (users with the most no. of reviews), such as the



no. of books in their library, the no. of reviews they
have written, the no. of votes/comments they have re-
ceived for their reviews etc. It is used in the trending
page.

7.5.2 Query (Optimized)

Although originally a single query, the optimized query
is split into three components to allow for re-usability
in other parts of the application (details are provided
in the Query Optimization & Performance Evaluation
section).

As shown below, the first component returns in-
formation for a given user (this is reused in the user’s
homepage).

WITH user trunc AS (
SELECT id user id,

name user name
FROM User
WHERE id = ’${user id}’

) , in library trunc AS (
SELECT user id,

COUNT(∗) num library
FROM In Library
WHERE user id = ’${user id}’
GROUP BY user id

) , review trunc AS (
SELECT user id,

COUNT(rating) num ratings,
AVG(rating) avg rating,
COUNT(id) num reviews,
SUM(num votes) num votes,
SUM(num comments) num comments

FROM Review
WHERE user id = ’${user id}’
GROUP BY user id

)
SELECT UT.user id AS id,

UT.user name,
ILT.num library,
RT.num ratings,
RT.avg rating,
RT.num reviews,
RT.num votes,
RT.num comments

FROM user trunc UT
JOIN in library trunc ILT ON UT.user id = ILT.user id
JOIN review trunc RT ON ILT.user id = RT.user id

As shown below, the second component returns the IDs
of the 15 users with the most reviews.

SELECT user id
FROM Review
GROUP BY user id
ORDER BY COUNT(id) DESC
LIMIT 15

Finally, as shown below, the third component is
JavaScript code that calls the first component for each
of the user IDs returned by the second component and

returns the aggregate results.

const topReviewers = async function(req, res) {
let user ids = await getTopReviewerIds();
const arr = [];
for ( let i = 0; i < user ids.length; i++){
const user id = user ids[ i ]. user id ;
const user information = await

getUserInformation(user id);
arr .push(user information[0]) ;

}
res . json(arr) ;

}

8. Query Optimization & Performance Eval-
uation

A significant challenge while working on the opti-
mizations was that MySQL doesn’t support query
caching and materialized views. Despite this, we found
workarounds and detail our query optimization efforts
below.

8.1. Initial Steps

We begin by briefly mentioning that we have tried
to adopt good query writing practices, such as using
Common Table Expressions (CTEs), avoiding Carte-
sian products, removing unnecessary joins, and push-
ing selections and projections to minimize the sizes of
intermediate results. Our queries have changed de-
pending on the needs of our application and hence ad-
hering to these practices has been a work-in-progress.

8.2. Author-Book-Review-User (ABRU) View

We observed that 3 complex queries had a similar
and expensive initial setup that involved joining the
Author, Written By, and Review tables to generate
aggregate statistics. These queries were expected to
run frequently, and we did not anticipate updates to
the data having a significant impact on the aggregate
statistics. Hence we decided to create a materialized
view for the setup, which the queries could utilize.
The materialized view could be separately updated
periodically at the backend to prevent the data from
becoming stale, and this could be done at a lesser
frequency compared to the frequency at which the
complex queries are called1.

Since MySQL did not support materialized views,

1We do not explicitly implement this update in the applica-
tion as we are simulating a materialized view with a table here.
Instead, we have mentioned this as part of our justification to
use materialized views, and believe it could feasibly be done if
we were to switch to a database provider with native support for
these views.



Query Before ABRU View
After ABRU View

Before AU Index After AU Index After AU Index & Rating Index
Book Recommendations 20.34 2.45 1.53 1.51

Author Perceptions 12.18 3.36 2.16 2.20
Author Statistics 96.42 1.21 0.3 0.31

Table 2. Performance evaluations for Book Recommendations, Author Perceptions, and Author Statistics queries (all values
are averages of 10 runs in seconds)

Query Unoptimized Optimized
Top Reviewers 22.19 2.32

Table 3. Performance evaluations for Top Reviewers query
(all values are averages of 10 runs in seconds)

we simulated them using a table that we called
ABRU View.

CREATE TABLE ABRU View (
SELECT A.id author id,

A.name author name,
R.book id book id,
R.id review id,
R.user id user id ,
R.rating rating

FROM Author A
JOIN Written By WB on A.id = WB.author id
JOIN Review R on WB.book id = R.book id

) ;

Coupled with some query optimizations (eg. removing
unnecessary joins on the User table, pushing a LIMIT
to slightly earlier in a query), introducing the view
yielded substantial improvements in query runtimes.
This can be seen in the Before ABRU View and After
ABRU View/Before AU Index columns in Table 2.

We also note that for the Author Statistics query,
with the ABRU View we were able to substantially
simplify the query especially by removing joins and
PARTITION BY statements. This explains the change
in the query runtime from 96.42 s to 1.21 s.

8.3. Author-User (AU) Index

We observed that the complex queries that were now
using ABRU View were grouping by author id or (au-
thor id, user id). Hence, to further improve query per-
formance, we created a composite index on the view.

CREATE INDEX AU Index ON ABRU View(author id,
user id);

On examining the EXPLAIN PLANs for the queries
with and without the index, we observed that the in-
dex replaced a FULL TABLE SCAN for the group ag-
gregations with a FULL INDEX SCAN. As seen in the

After AU Index column in Table 2, this yielded further
improvements in query runtimes.

8.4. Rating Index

We observed that the complex queries that were now
using ABRU View were making use of its rating col-
umn. So, as an experiment, we added an index for this
column.

CREATE INDEX Rating Index ON ABRU View(rating);

As can be seen in the last column of Table 2, the in-
dex yielded no additional improvements in query run-
time. On examining the queries we noticed that this
was perhaps because the rating column was being used
to compute the average rating, and hence the query
could not really benefit from the index. This was con-
firmed when we looked at the query EXPLAIN PLANs
and saw that they were not making use of the index.

8.5. Splitting Queries into Reusable Components

As mentioned in the Queries section, we intended to
use the Top Reviewers query in the trending page to
return information about the top 15 reviewers. How-
ever, we noticed that the query had a valuable compo-
nent that returned information about a user based on
their ID. This component could be reused in the user’s
home page and hence we decided to split the query into
separate components and stitch them together using
ASYNC/AWAIT in JavaScript. The first component
could retrieve user ids for the top reviewers, and the
second component could asynchronously retrieve infor-
mation about these users based on their user ids. The
improvements in query runtime can be seen in Table
3. They mainly came from query restructuring and
not entirely from the split itself. However, we wanted
to showcase this here as it was our attempt to both
optimize a query and reuse it for multiple features.

9. Technical Challenges

We have faced several challenges while working on the
project, and found different ways to address them.
Some of them include:



• Dataset: Our goal was to find a dataset that was
both interesting and manageable in size. While
the Goodreads source we previously mentioned
contained data for several genres eg. children’s
books, mystery etc., we found that some datasets
were too large to work with locally. Ultimately,
we chose the poetry dataset as it was the perfect
size for the project.

• Preprocessing: During data preprocessing, we dis-
covered that approximately 43% of the book cover
image links were broken. As including book cover
images was crucial to our application’s aesthet-
ics, we wrote a scraper to extract the links from
Goodreads, ultimately reducing the number of
broken image links to just two. Additionally, for
the users we only had anonymized user IDs. To
add more information for users we used Python’s
Faker library to generate dummy usernames, pass-
words, names, and emails.

• Complex Queries: Writing complex queries with
runtimes suitable for query optimization was a
challenging task. Our initial attempts at query
writing yielded queries that had large runtimes,
but the queries felt contrived and not particularly
useful in the application. We spent a considerable
amount of time brainstorming to come up with
queries that were complex and would also mean-
ingfully contribute to the user experience, such
as the recommendation, author perception, author
statistics, and top reviewers queries.

• Query Optimization: We encountered a challenge
in query optimization due to MySQL’s lack of
query caching and materialized views. Despite
some initial attempts at optimization that focused
on making simple changes to the query structure,
we found that the optimized queries still took con-
siderable time to run, making them unsuitable
for the application. However, we discovered that
many of the queries had a similar initial setup. We
leveraged this similarity by creating a materialized
view for the setup (in particular, we simulated a
materialized view using a table), and adding an
index to it. This approach resulted in significant
improvements to our query runtimes, making them
feasible for use in the application.

10. Appendix

10.1. Book Recommendations Original (Unopti-
mized) Query

WITH author user AS (

SELECT A.id author id,
U.id user id ,
AVG(rating) AS avg rating

FROM Author A
JOIN Written By WB ON A.id = WB.author id
JOIN Review R ON WB.book id = R.book id
JOIN User U ON R.user id = U.id

GROUP BY A.id, U.id
) , top authors AS (
SELECT author id
FROM author user
WHERE user id = ’${user id}’ AND

avg rating >= 4.0
) , similar users AS (
SELECT DISTINCT user id
FROM author user
WHERE user id != ’${user id}’ AND

author id IN (SELECT author id FROM
top authors) AND

avg rating = 5.0
) , similar users books AS (
SELECT DISTINCT R.book id book id
FROM Review R

JOIN similar users SU ON R.user id = SU.user id
WHERE rating >= 4.0 AND

R.book id NOT IN (
SELECT book id
FROM In Library
WHERE user id = ’${user id}’
)

)
SELECT B.id book id,

B. title book title ,
B.image url image url

FROM Book B
JOIN similar users books SUB ON B.id = SUB.book id

LIMIT 16;

10.2. Author Perceptions Original (Unoptimized)
Query

WITH author user AS (
SELECT A.id author id,

A.name author name,
U.id user id ,
AVG(rating) avg rating

FROM Author A
JOIN Written By WB ON A.id = WB.author id
JOIN Review R ON WB.book id = R.book id
JOIN User U on U.id = R.user id
WHERE A.name LIKE ’%${name}%’
GROUP BY A.id, U.id

) , dislikes AS (
SELECT author id,

author name,
COUNT(user id) num dislikes

FROM author user
WHERE avg rating < 3.0
GROUP BY author id, author name

) , neutral AS (
SELECT author id,

author name,
COUNT(user id) num neutral

FROM author user
WHERE avg rating = 3.0
GROUP BY author id, author name



) , likes AS (
SELECT author id,

author name,
COUNT(user id) num likes

FROM author user
WHERE avg rating > 3.0
GROUP BY author id, author name

) , DN AS (
SELECT D.author id,

D.author name,
num dislikes,
num neutral

FROM dislikes D
LEFT JOIN neutral N ON D.author id =

N.author id
UNION
SELECT N.author id,

N.author name,
num dislikes,
num neutral

FROM dislikes D
RIGHT JOIN neutral N ON D.author id =

N.author id
) , DNL AS (

SELECT DN.author id,
DN.author name,
num dislikes,
num neutral,
num likes

FROM DN
LEFT JOIN likes ON DN.author id =

likes.author id
UNION
SELECT likes.author id,

likes .author name,
num dislikes,
num neutral,
num likes

FROM DN
RIGHT JOIN likes ON DN.author id =

likes.author id
)
SELECT author id id,

author name name,
IFNULL(num dislikes, 0) num dislikes,
IFNULL(num neutral, 0) num neutral,
IFNULL(num likes, 0) num likes

FROM DNL

10.3. Author Statistics Original (Unoptimized)
Query

WITH author reviews AS (
SELECT A.id author id,

A.name author name,
WB.book id book id,
R.rating rating ,
R.text text

FROM Author A
JOIN Written By WB ON A.id = WB.author id
JOIN Review R ON WB.book id = R.book id

) , author rating statistics AS (
SELECT DISTINCT author id,

author name,
AVG(rating) OVER (PARTITION BY author id) AS

avg rating,

MIN(rating) OVER (PARTITION BY author id) AS
min rating,

MAX(rating) OVER (PARTITION BY author id) AS
max rating,

COUNT(rating) OVER (PARTITION BY author id)
AS num ratings,

COUNT(text) OVER (PARTITION BY author id)
AS num reviews

FROM author reviews
) , author num works AS (
SELECT author id,

COUNT(DISTINCT book id) num books
FROM Written By
GROUP BY author id

)
SELECT ARS.author id author id,

ARS.author name author name,
ANW.num books num books,
ARS.num reviews num reviews,
ARS.num ratings num ratings,
ROUND(ARS.avg rating, 1) avg rating,
ARS.min rating min rating,
ARS.max rating max rating

FROM author review statistics ARS
JOIN author num works ANW ON ARS.author id =

ANW.author id;

10.4. Top Reviewers Original (Unoptimized) Query

WITH top reviewer ids AS (
SELECT user id
FROM Review
GROUP BY user id
ORDER BY COUNT(id) DESC
LIMIT 15

) , user trunc AS (
SELECT id user id,

name user name
FROM User

) , in library trunc AS (
SELECT user id,

COUNT(∗) num library
FROM In Library
GROUP BY user id

) , review trunc AS (
SELECT user id,

COUNT(rating) num ratings,
AVG(rating) avg rating,
COUNT(id) num reviews,
SUM(num votes) num votes,
SUM(num comments) num comments

FROM Review
GROUP BY user id

) , reviewer info AS (
SELECT UT.user id,

UT.user name,
ILT.num library,
RT.num ratings,
RT.avg rating,
RT.num reviews,
RT.num votes,
RT.num comments

FROM user trunc UT
JOIN in library trunc ILT ON UT.user id =

ILT.user id
JOIN review trunc RT ON ILT.user id =



RT.user id
)
SELECT RI.user id,

RI.user name,
RI.num library,
RI.num ratings,
RI.avg rating,
RI.num reviews,
RI.num votes,
RI.num comments

FROM reviewer info RI
JOIN top reviewer ids TR ON TR.user id =

RI.user id;


	. Introduction
	. Architecture
	. Data
	. Poetry Books
	. Series
	. Poetry Interactions
	. Poetry Reviews
	. Authors

	. Database
	. Preprocessing
	. ER Diagram
	. Relational Schema
	. Relation Sizes
	. Normal Form Usage & Justification

	. Web Application Description
	. API Specification
	. Queries
	. Book Information
	Description
	Query

	. Book Recommendations
	Description
	Query (Optimized)

	. Author Perceptions
	Description
	Query (Optimized)

	. Author Statistics
	Description
	Query (Optimized)

	. Top Reviewers
	Description
	Query (Optimized)


	. Query Optimization & Performance Evaluation
	. Initial Steps
	. Author-Book-Review-User (ABRU) View
	. Author-User (AU) Index
	. Rating_Index
	. Splitting Queries into Reusable Components

	. Technical Challenges
	. Appendix
	. Book Recommendations Original (Unoptimized) Query
	. Author Perceptions Original (Unoptimized) Query
	. Author Statistics Original (Unoptimized) Query
	. Top Reviewers Original (Unoptimized) Query


