
AutoArt
I - Abstract

Through this project, we aim to generate more appealing images through neural style
transfer. Since the original paper was published [1], there have been multiple extensions that
improve the accuracy and flexibility of style transfer. We proposed and implemented two novel
methods to improve our outputs for neural style transfer: (i) fine-tuning the model as a
classification for a particular style, and (ii) flattening the layers to allow us the convenience of
adding style and content loss inside the blocks. Through network dissection, we compare the
best positions for style and content loss. We compare various methods of doing style transfer by
judging the output stylized images on various quantitative (style loss and content loss) metrics.
Among all the traditional NST models, we find mobilenetv2 outperforms all others, hence we
perform all experiments with it. In comparison among different mobilenetv2 models, the one that
has flattened layers with the fine-tuned model, where the style losses are in the initial layers and
content losses are throughout, works the best visually and also has the lowest style and content
loss. This can be corroborated by network dissection outputs for activations in initial layers vs
final layers.

II - Introduction
In this project, we applied neural style transfer to a variety of input images with different

impressionist style images, to generate impressionist versions of the input images. Backbones,
such as VGG-19, MobileNetV2, ResNext, and Alexnet, are trained on image classification
datasets but are repurposed to do neural style transfer. These out-of-the-box solutions do a
decent job of generally transferring any style to any input image, but there are many cases
where they fail to apply a style in an aesthetically pleasing way. AutoArt aimed to fine-tune
MobileNetV2 specifically for impressionist style transfer to more consistently generate
aesthetically pleasing output images.

In addition to fine-tuning, we ran a quantitative analysis on selected MobileNetV2
variants we generated. This included SSIM to score similarities between generated output
images and the style and content images that generated them. We used network dissection to
visualize how our changes to MobileNetV2 affected each layer’s activation. Using this analysis
we could better place our content and style loss and understand which of our changes were
having the most effect.

III - Related Work
As described in the neural style transfer track, we based most of our development on [1].

[1] explains how style transfer between images is possible because of a new image
representation derived from convolutional neural networks (CNN), that allows style and content
to be separated. We compared different backbones and selected MobileNetV2 [2] to do a

deeper analysis on. We focused on network dissection [3] for MobileNetv2, and moved content
and style loss function placement based on network dissection results.

[2] describes the architecture of the MobileNetv2 backbone we plan to use. It goes into
detail on some of the more specific/advanced components of the cutting edge CNN backbones
(things like residual blocks and linear bottlenecks). [9] explains why residual blocks are
important, to avoid vanishing gradients in deep architectures and to improve a more
complicated architecture’s ability to model a simple (i.e. identity) function.

[4] and [7] similarly explain the architecture and use cases for ResNext. Unlike VGG-19
or AlexNet [6], these newer architectures use blocks to encapsulate more complicated groups of
operations. This can either be to improve efficiency or accuracy (or both).

There are a few other backbones we’ve been comparing the outputs of, VGG-19 [1] [5],
AlexNet [6] and ResNext [4], that we won’t be doing a larger analysis of, these were just to give
ourselves more output comparisons and a better baseline understanding of common backbone
architectures.

Network dissection [3] [10] aims to quantify “the interpretability of latent representations
of CNNs but evaluating the alignment between individual hidden units and a set of semantic
concepts” [3]. The authors of [3] created a dataset (Broden) and metrics specifically for object
classification scoring. Their Intersection over Union (IoU) score is less applicable to our use
case, but because MobileNetV2 is trained on ImageNet for classification, we can still apply their
visualizations and semantic classification to try to understand what the layers of our models are
activating on, and how we should tune our model to potentially improve results. The process for
their data segmentation and semantic classification relies on ResNet50 [10] and UPerNet [11] in
a Feature Pyramid Network [12] configuration. This allows the model to generate feature maps
with ResNet on the bottom-up side, and their UPerNet model to restore resolution while
including semantic information. This classification was less important to our project analysis
since they did not have texture implemented specifically, it was difficult to use the results from
this part to analyze our architecture.

IV - Implementation

Summary
We have repurposed a PyTorch tutorial [8] that originally uses VGG-19 to perform Neural

Style Transfer. In this approach, two images are considered - style image and content image.
Our goal is to take an input image (which may be initialized randomly), merge these two images
with the input image in a way that the input image is transformed into a stylized version of the
content image. This is done by minimizing two loss functions: style loss and content loss. Note
that this is very different from superimposing the two images - neural style transfer aims to
create a new image from the two input images rather than a basic superimposition.

Loading the images
As we are using PyTorch tensors to store the image values, we had to perform some

reshaping and value manipulation of the pixel values of the images.

● Reshaping the images to tensors of a particular size ([1, 3, 512, 512]) so that both style
and content tensors have the same shape.

● Adding an extra ‘fake’ dimension to the tensors used as a batch dimension. This was
required to fit the network’s input dimensions.

● Scaling down the pixel values from a range of [0, 255] to [0,1]. This was done because
the pytorch models (torchvision.models) expect a value in this range.

● Finally, the images were loaded into PyTorch tensors.
● On reconverting the tensors into PIL images and printing them out, we observed that the

output images were a bit blurry than the original images due to downsampling.
● The images get downsampled further when running on CPU vs when running on GPU.

This has been documented in our findings.

Loss Functions
We are trying to minimize two loss functions:

1. Style loss
2. Content loss

Content Loss

We define Dc, which measures how different the content is between the content image and input
image. For defining content loss for a particular layer, we define the following terms:

FXL = feature vector of features in layer L of input image X
FCL = feature vector of features in layer L of content image C
wCL = weights
Content Loss = wCL *∥FXL − FCL ∥2

Content loss is the weighted mean squared difference between the features of the input image
X and the content image C.

Style Loss

We define Ds, which measures how different the style is between the style image and input
image. For defining style loss for a particular layer, we define the following terms:

FXL = feature vector of features in layer L of input image X
GXL = normalized Gram Matrix of a reshaped version of FXL:
FSL = feature vector of features in layer L of style image S
GSL = normalized Gram Matrix of a reshaped version of FSL

wSL = weights
Gram matrix is used instead of directly using FXL matrix
Style Loss = wSL *∥GXL − GSL ∥2

Why Gram Matrix?

A Gram matrix is the multiplication of a matrix by its transpose. The Gram matrix is used
to find the correlation between features, since we have feature vectors we can take their dot
product to get their correlation. Features that are closer together result in closer vectors, which
produce a larger dot product. Style can be thought of as features with high co-occurrence
between channels. This high co-occurrence is exactly what the Gram matrix captures, this
degree of correlation between the channels is used to approximate the style itself, thus allowing
us to “separate” style from content.

Lower levels of the CNNs capture information about individual pixel values, whereas
higher levels of the CNN capture content. This has informed our placement of the content loss
function, as we see many of these implementations place content loss in higher levels. Style
loss is typically placed throughout the CNN, since it is measured by the correlation of feature
maps in a layer. The style loss is essentially matching the distribution of features between the
style image and the output image (in a Gram matrix), so similar features are accounted for and
won’t affect the style loss.

Importing the Model

For the initial comparison of the style transfer output, we are importing the following pre-trained
neural network backbones, as defined in the PyTorch torchvision module:

1. VGG-19
2. MobileNetV2
3. ResNext
4. AlexNet

While importing the models, we obtain the layer information of the model, which will be stored
so that we are able to add the style and content loss functions after certain layers and compare
the outputs.

Gradient Descent

We are using the L-BFGS algorithm for gradient descent. The benefits of using this algorithm
are:

● Memory efficient
● Fast convergence
● No requirement for tuning the learning rate
● Effective handling of non-convex objectives

Fine-Tuning

We created our dataset where impressionist style images (link) are positive images and
non-impressionist style images (link) are negative images. We used a binary classification task
to train mobilenetv2. For the mode, we changed the last classification layer of mobilenetv2 to
give 2 outputs only. Then we use this fine tuned model for neural style transfer.

Network Dissection

Network dissection has been done on a variety of backbones to quantify how each layer
contributes to object classification. Our goal was not object classification, so many of the metrics

https://drive.google.com/drive/folders/17PxO2WUmkTS6ShhBywr2ZXDV5EOCf1SM?usp=drive_link
https://drive.google.com/drive/folders/1nNDcBPnnlOm2Vi8TfaZf1Ua5PCigYIuo?usp=drive_link

used could not be directly applied to our MobileNetV2 variants. The focus of our network
dissection was to visualize what each layer was generally activating on (since it varies from unit
to unit).

Depending on dataset size, this part was very computationally intense, so it was set up
to run on one of our personal GPUs. Moving datasets around on Google Drive/Colab is
cumbersome and can lead to quicker compute resource timeout, which also meant this was
much easier to run on a personal computer. The set up time for this was more than expected,
especially since the network dissection work was completed in 2020 and has not been updated.
After getting a PC setup with Ubuntu and getting CUDA installed, many updates needed to be
made to outdated code in addition to creating new datasets for network dissection.

We created our own experiment Python script that can load our 4 variants (MobileNetV2
pre-trained, MobileNetV2 fine-tuned, flattened MobileNetV2 pre-trained, and flattened
MobileNetV2 fine-tuned) with our custom datasets. The code was stored in a Github repository.

We did a lot of experimenting with what set of images we should visualize activations on,
to get an idea of how texture (style) might activate, since both the backbone we’re using and the
analysis we’re doing are based on object classification. We tried images with the same content
but different styles (i.e. Mona Lisa original, cartoon, abstract, etc). We compared activations on
input, content and output triplets as well as our training dataset and new impressionist and not
impressionist style images. The input, content and output triplets gave us some context for what
style vs content is activating, so we focused on our analysis on these.

We also ran the object classification statistics, just to get an idea of how our changes
were affecting the model. We could see when object classification was getting worse, but
couldn’t directly tie that to style transfer being worse. It would make sense that because we’re
changing the goal of this model but still using object classification metrics, that it would score
worse. If a model does much worse on object classification, we could interpret that as a
potential decrease in neural style transfer performance, since we do need our model to be able
to do some amount of object detection in order to separate style and content.

SSIM

SSIM is a structural similarity index used for measuring image quality. The original paper
which introduced SSIM [13] states that when comparing images, the mean squared error (MSE)
doesn't explain perceived similarity as observed by a human. Structural similarity aims to
address this shortcoming by taking luminance, contrast and structure of the image into account.
SSIM(image1, image2) outputs a value between 0 and 1. A value closer to 1 indicates high
perceived similarity between the two images.

V - Experiments and Results

Hyperparameter Tuning

We finetune the hyperparameters after fixing the positions for style loss and content loss.
We increased the style weight to have more style impact on the output image. When starting
with a randomly generated image, having a small content loss leads to moving the entire image
towards the style, however when we increase the content loss from 10 to 100, the model
generates an output which has a huge impact from the content image, helping in recreating the
content image. When we increase the number of epochs for alexnet, we get better results with a
smaller loss for both style and content, however with a much smaller epochs for other
architectures the model converges.

We also vary the placement of the style and content loss and observe visually interesting
results for the various placements. We corroborate our findings with network dissection.

VGG-19

As mentioned in [5], there is a tradeoff between convolutional neural networks depth and
accuracy. Having 16-19 weight layers gives the best output.
On printing the structure of the VGG-19 model, we can see that it is one Sequential block with
2D convolutions, max pooling and ReLU layers. In our implementation, we have currently added
style loss and content loss after the following layers:
content_layers_default = ['conv_4']

style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4',

'conv_5']

Content weight: 1
Style weight: 1000000
Results:
After 300 runs, we get the following loss values:
Style Loss : 0.266553 Content Loss: 2.349637

MobileNetV2

Currently, while implementing MobileNetV2, we have flattened each of the sequential blocks.
That is, originally the structure was:

We converted (‘flattened’) this structure to the following:

In the original structure, we would only have been able to introduce style and content
losses after each of the blocks. However upon flattening the structure, we now have the
flexibility to introduce style and content losses after each individual convolution layer. However,
it is no longer MobileNetV2 but rather a modified structure.

Upon further reading, we have found that flattening this structure may not be beneficial
and could have adverse effects. MobileNetv2 introduced inverted residual with linear bottleneck.
Bottleneck layers are used because it was assumed that manifolds of interest would be
embedded in low-dimensional spaces. So reducing the dimensionality allows the manifold of
interest to occupy the entire space, and gives good accuracy while reducing computations.
However, nonlinear transforms (ReLU) break this. When ReLU collapses the channel it loses
information in that channel. The linear bottleneck is needed to prevent nonlinearities from
destroying information. (ReLU is capable of preserving complete information, but only if the
input lies in a low-dimensional subspace).

One of our future goals is to compare the output of our current implementation with the
output of the original structure of MobileNetV2.
Content weight: 1
Style weight: 10000000
Results:
After 300 runs, we get the following loss values:
Style Loss : 0.003722 Content Loss: 0.109142

ResNext

Similar to MobileNet, we have tried to flatten the blocks in the network to add flexibility to the
placement of style and content loss functions. However, due to having residual connections in
the model, we cannot flatten the structure. This is the same reason as why we cannot flatten
MobileNetV2.

Currently we have placed the loss functions after the following layers:
content_layers_default = ['layer2']

style_layers_default = ['layer1', 'layer2', 'layer3', 'layer4']

Content weight: 1
Style weight: 1000000
Results:
After 300 runs, we get the following loss values:
Style Loss : 0.059025 Content Loss: 0.011729

AlexNet

Content weight: 10000000
Style weight: 100
Results:
After 1000 runs, we get the following loss values:
Style Loss : 84.393143 Content Loss: 317.107697

Running on CPU vs GPU:
The images get downsampled further when running on CPU vs when running on GPU. This has
been documented in our findings for AlexNet: when we run the network on CPU, we get a much
higher loss value and a poorly stylized content image as the output.
When running the network on CPU, after 1000 runs, we get the following loss values:
Style Loss : 709.549011 Content Loss: 2085.458740

This is because downsampling the image reduces the features in the image, making it further
difficult to minimize the loss to the same extent as the higher resolution image.

Left: Running AlexNet on GPU Right: Running AlexNet on CPU

VGG-19, MobileNetv2 Comparison
In the VGG-19 paper [5], the authors investigated the effect of network depth on

accuracy, for an image recognition problem. They use 3x3 convolution filters with 16-19 layers
to produce a model that achieves high accuracy and generalizes to other datasets. The stack of
smaller receptive fields allows for also stacking more nonlinear rectification layers, which
improves feature detection. VGG-19 is not compute or memory efficient though (as mentioned in
class).

MobileNetV2 does improve on efficiency and accuracy, when compared to VGG-19.
MobileNetv2’s architecture is similar to ResNet’s, as it uses residual units and bottlenecks.
However instead of 3x3 convolution it uses depthwise convolution.It uses a different bottleneck
architecture to increase the channel dimensions for this depthwise convolution.

Throughout the subsequent findings, we have used MobileNetV2 as it consistently achieved the
lowest loss values.

Comparing various content images
Here, we used flattened, fine-tuned Mobilenetv2 to perform neural style transfer on various type
of content images. We ran the model with the following hyperparameters:

style_weight=100000, content_weight=1, num_steps=500

These are the loss placement layers for style and content loss:

content_layers_default = ['conv_1_1', 'conv_2_2', 'conv_4_2',

'conv_8_2', 'conv_14_2']

style_layers_default = ['conv_1_1', 'conv_2_2', 'conv_4_2',

'conv_8_2', 'conv_14_2']

This is the style image as used throughout the analysis:

Nature Style Loss : 0.068051 Content Loss:
0.560982
SSIM Content Image Value: 0.063249
SSIM Style Image Value: 0.011822

Architecture Style Loss : 0.019836
Content Loss: 0.455306
SSIM Content Image Value: 0.095920
SSIM Style Image Value: 0.011825

Animated Style Loss : 0.016104
Content Loss: 0.333806
SSIM Content Image Value: 0.111601
SSIM Style Image Value: 0.013478

Hyperparameter Tuning

We used the following images:

Tuning the Layers for Content and Style Loss
We ran the neural style transfer on the flattened, fine-tuned network and got the

following results by modifying the layers on which style and content loss is measured. We used
the following hyperparameter values:

style_weight=100000, content_weight=1, num_steps=500

Loss Layers Image Outputs

content_layers_defau

lt = ['conv_1_1',

'conv_2_2',

'conv_4_2',

'conv_8_2',

'conv_14_2']

style_layers_default

= ['conv_8_2',

'conv_11_2',

'conv_14_2']

Content Loss Layers

all through NN,

Style Loss Layers at

final layers

Style Loss : 0.000089
Content Loss: 0.000000
SSIM Content Image Value:
0.999999
SSIM Style Image Value:
0.089718

content_layers_defau

lt = ['conv_1_1',

'conv_2_2',

'conv_4_2',

'conv_8_2',

'conv_14_2']

style_layers_default

= ['conv_1_1',

'conv_2_2',

'conv_4_2',

'conv_8_2',

'conv_14_2']

Style Loss Layers

all through NN,

Content Loss Layers

all through NN

Style Loss : 0.020937
Content Loss: 0.483837
SSIM Content Image Value:
0.060341
SSIM Style Image Value:
0.009815

content_layers_defau

lt = ['conv_1_1',

'conv_2_2',

'conv_4_2',

'conv_8_2',

'conv_14_2']

style_layers_default

= ['conv_1_1',

'conv_2_2']

Content Loss Layers

all through NN,

Style Loss Layers at

initial layers

Style Loss : 0.036559
Content Loss: 0.518320
SSIM Content Image Value:
0.065759
SSIM Style Image Value:
0.013625

content_layers_defau

lt = ['conv_1_1',

'conv_2_2']

style_layers_default

= ['conv_1_1',

'conv_2_2',

'conv_4_2',

'conv_8_2',

'conv_14_2']

Content Loss Layers

at initial layers,

Style Loss Layers

all through NN

Style Loss : 0.015872
Content Loss: 0.389904
SSIM Content Image Value:
0.064501
SSIM Style Image Value:
0.010989

content_layers_defau

lt = ['conv_8_2',

'conv_14_2']

style_layers_default

= ['conv_1_1',

'conv_2_2',

'conv_4_2',

'conv_8_2',

'conv_14_2']

Content Loss Layers

at final layers,

Style Loss Layers

all through NN

Style Loss : 0.000015
Content Loss: 0.000044
SSIM Content Image Value:
0.293853
SSIM Style Image Value:
0.046641

content_layers_defau

lt = ['conv_8_2',

'conv_11_2',

'conv_14_2']

style_layers_default

= ['conv_1_1',

'conv_2_2',

'conv_4_2']

Content Loss Layers

at final layers,

Style Loss Layers at

initial layers

Style Loss : 0.000001
Content Loss: 0.000039
SSIM Content Image Value:
0.293300
SSIM Style Image Value:
0.046930

content_layers_defau

lt = ['conv_1_1',

'conv_2_2',

'conv_4_2']

style_layers_default

= ['conv_8_2',

'conv_11_2',

'conv_14_2']

Content Loss Layers

at initial layers,

Style Loss Layers at

final layers

Style Loss : 0.000089
Content Loss: 0.000000
SSIM Content Image Value:
0.999999
SSIM Style Image Value:
0.089718

Fine Tuned Flattened vs Fine Tuned Unflattened (Original) MobileNetV2
We used the following hyperparameter values:
style_weight=10000, content_weight=1, num_steps=100

Unflattened:

content_layers_default = ['layer_1', 'layer_2', 'layer_4',

'layer_8', 'layer_14']

style_layers_default = ['layer_1', 'layer_2', 'layer_4',

'layer_8', 'layer_14']

Flattened:

content_layers_default = ['conv_1_1', 'conv_2_2', 'conv_4_2',

'conv_8_2', 'conv_14_2']

style_layers_default = ['conv_1_1', 'conv_2_2', 'conv_4_2',

'conv_8_2', 'conv_14_2']

Flattened Unflattened

Style Loss : 0.056744
Content Loss: 0.342582
Ssim_val_content = 0.16137826
Ssim_val_style = 0.02791427

Style Loss : 0.256343
Content Loss: 0.395394
Ssim_val_content = 0.6047263
Ssim_val_style = 0.068228394

Increasing Number of Runs

Running on Fine-Tuned, Unflattened MobileNet V2:

We used the following hyperparameter values:

style_weight=100000, content_weight=1,

content_layers_default = ['conv_1_1', 'conv_2_2', 'conv_4_2',

'conv_8_2', 'conv_14_2']

style_layers_default = ['conv_1_1', 'conv_2_2', 'conv_4_2',

'conv_8_2', 'conv_14_2']

Runs Image Outputs

50 Style Loss : 0.193758
Content Loss: 1.020388
SSIM Content Image Value:
0.460298
SSIM Style Image Value:
0.056087

100 Style Loss : 0.129759
Content Loss: 0.930155
SSIM Content Image Value:
0.387522
SSIM Style Image Value:
0.053093

500 Style Loss : 0.115474
Content Loss: 0.847360
Ssim_val_content:

0.110908456

ssim_val_style:

0.019305937

Running on Fine-Tuned, Flattened MobileNet V2

Here, we are using the same weights as unflattened for a fair comparison. We used the
following hyperparameter values:
style_weight=100000, content_weight=1

content_layers_default = ['conv_1_1', 'conv_2_2', 'conv_4_2',

'conv_8_2', 'conv_14_2']

style_layers_default = ['conv_1_1', 'conv_2_2', 'conv_4_2',

'conv_8_2', 'conv_14_2']

Runs Image Outputs

50 Style Loss : 0.031723
Content Loss: 0.506261
SSIM Content Image Value:
0.354319
SSIM Style Image Value:
0.051471

100 Style Loss : 0.022443
Content Loss: 0.473784
SSIM Content Image Value:
0.333108
SSIM Style Image Value:
0.048202

500 Style Loss : 0.019978
Content Loss: 0.492322
SSIM Content Image Value:
0.061220
SSIM Style Image Value:
0.010030

The flattened, fine-tuned model exhibits lower content loss than unflattened fine-tuned model.

Fine-Tuning

Comparison between fine-tuned unflattened and pre-trained unflattened

We used the following hyperparameter values:

style_weight=100000, content_weight=1, num_steps=500

content_layers_default = ['layer_1', 'layer_2', 'layer_4',

'layer_8', 'layer_14']

style_layers_default = ['layer_1', 'layer_2', 'layer_4',

'layer_8', 'layer_14']

Pretrained Unflattened Fine-Tuned Unflattened

Style Loss : 0.104357
Content Loss: 1.096774

Style Loss : 0.117117
Content Loss: 0.844769

Comparison bw fine-tuned flattened and non-fine-tuned flattened
style_weight=10000, content_weight=1, num_steps=100

Fine-Tuned flattened Not-Fine-Tuned flattened

Style Loss : 0.055899 Content Loss:
0.343080
SSIM Content Image Value: 0.149240
SSIM Style Image Value: 0.026363

Style Loss : 0.124943 Content Loss:
0.531728
SSIM Content Image Value: 0.131574
SSIM Style Image Value: 0.022726

VI - Analysis

Flattened fine-tuned MobileNetV2 vs VGG-19
Flattening and fine-tuning our model on impressionist style did show an improvement in

our model’s ability to apply impressionist style to a content image.

Content image:

VGG-19 MobileNetV2 - flattened and fine-tuned

Fine tuned vs not fine tuned
We observed consistent better loss values for the fine-tuned model. This can be

attributed to the fact that fine-tuning the model trained the model to work better on doing
style-transfer for this particular style (i.e. impressionist art).

Fine tuned flattened vs fine tuned unflattened
We observed generally better (lower) loss values for the flattened MobileNetV2 model.

This is because flattening the model gives us more control over the layers we can apply the
style and content loss to. Flattening the MobileNetV2 model gets rid of the inverted residual
layers and the blocks, which could lead to issues deeper in the architecture with vanishing
gradients. This might mean for the flattened variant that we could use a shallower architecture
(at least for the small images we’re running on) and maintain our lower loss scores. Texture is
typically identified at lower layers of the model, which might explain why this model did better at
impressionism style transfer.

Tuning the Layers for Content and Style Loss
We observed that the combination of having style loss to initial layers and content loss to

final layers gave the lowest loss values, however it did not seem the most visually appealing
result. On adding style loss throughout the network and adding content loss to the initial layers,
we were able to achieve the subjectively most appealing result. Below are a few observations
from the experiments we performed:

1. Adding Style Loss to the final layers: The output image had no contribution of the
style image - this can be seen as invariant of the fact whether we apply content loss

initially or throughout the layers. This can be attributed to the fact that style changes to
the image are more on a pixel-by-pixel level, which are the characteristics of the initial
layers.

2. Adding Content Loss Layers at initial layers and Style Loss Layers at final layers:
When there is no overlap between the content and style loss layers - the output image is
the same as the content image. The model needs to learn the relationship between
content and style and there needs to be a balance between the two, otherwise the model
will learn to just output the lowest content loss possible, which is the same image as
input.

3. Adding Content Loss Layers at final layers: The model performed best and gave the
best looking output image when we applied content loss to the initial layers or throughout
the network. Based on our network dissection (shown in the tables below), we found that
adding content loss to only the final layers in the flattened model meant content loss was
not being calculated on activations that were contributing to identifying the content of an
image. Because flattening caused more activations earlier and degraded towards the
higher layers we saw improvements when we calculated content loss at lower layers.

4. Adding Content Loss Layers and Style Loss Layers throughout the neural
network: This combination gave a visually appealing output, which leads us to believe
that adding both losses throughout the network is an effective way to create visually
appealing style transfer images.

5. Adding style loss throughout the network and adding content loss to the initial
layers:We were able to achieve the subjectively most appealing result. We observed
that it is important to add content and style loss especially in the initial layers, as it
seems to create an image that is able to better understand the style component. This
can be corroborated by the network dissection as shown below.

Network Dissection
Through network dissection, we can corroborate our observations that adding style loss

and adding content loss to the initial layers leads to better visually appealing style transfer
images.

Table showing activations throughout the flattened fine-tuned model

Flattened,
fine-tuned,
layer 2
unit 2

Flattened,
fine-tuned,
layer 4
unit 3

Flattened,
fine-tuned,
layer 8
unit 0

Flattened,
fine-tuned,
layer 14
unit 14

Table showing activations of our 4 MobileNetV2 variants

Flattened,
fine-tuned,
layer,
unit 1

Flattened,
pre-trained,
layer,
unit 1

Unflattened,
fine-tuned,
layer,
unit 1

Unflattened,
pre-trained,
layer,
unit 1

Increasing Number of Runs
Increasing the number of epochs for which the neural network runs consistently

improves the performance of the model in terms of style and content loss values.

VII - Conclusion
In this project, we learned how to use convolutional neural networks to do neural style

transfer. We learnt about various pre-existing models such as VGG-19, MobileNetV2, ResNext,
and Alexnet. We observed that even with low style and content loss values for a particular
neural style transfer output, the output image may not appear to be the most visually appealing
to a human. This motivated us to fine-tune MobileNetV2 to create a model trained on
recognizing a particular art style (impressionism). We also tried flattening the block structure of
the model so we could experiment with loss function placements. We observed that we were
able to produce more visually appealing outputs with these modifications. We tried various

combinations of hyperparameters and loss placement in the CNN layers, and found visually
interesting results as documented. Through network dissection, our findings about placement of
loss layers was corroborated. The entire experience of working with each other, TAs and
Professor Shi on this engaging project was extremely rewarding and we believe that we have
created a novel model with visually appealing results.

References
1. Image Style Transfer Using Convolutional Neural Networks; Leon A. Gatys, Alexander S.

Ecker, Matthias Bethge;
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780634

2. MobileNetV2: Inverted Residuals and Linear Bottlenecks; Mark Sandler Andrew Howard
Menglong Zhu Andrey Zhmoginov Liang-Chieh Chen;
https://arxiv.org/pdf/1801.04381.pdf

3. Network Dissection: Quantifying Interpretability of Deep Visual Representations; David
Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, Antonio Torralba;
http://netdissect.csail.mit.edu/

4. Aggregated Residual Transformations for Deep Neural Networks; Saining Xie Ross
Girshick Piotr Doll´ar Zhuowen Tu Kaiming He; https://arxiv.org/pdf/1611.05431v2.pdf

5. VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE
RECOGNITION; Karen Simonyan & Andrew Zisserman;
https://arxiv.org/pdf/1409.1556.pdf

6. ImageNet Classification with Deep Convolutional Neural Networks; Alex Krizhevsky, Ilya
Sutskever, Geoffrey E. Hinton;
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e92
4a68c45b-Paper.pdf

7. How to Visualize Filters and Feature Maps in Convolutional Neural Networks; Jason
Brownlee;
https://machinelearningmastery.com/how-to-visualize-filters-and-feature-maps-in-convolu
tional-neural-networks/

8. PyTorch Tutorial;
https://pytorch.org/tutorials/advanced/neural_style_tutorial.html#neural-transfer-using-pyt
orch

9. Deep Residual Learning for Image Recognition; Kaiming He, Xiangyu Zhang, Shaoqing
Ren, Jian Sun; https://arxiv.org/pdf/1512.03385.pdf

10. Understanding the Role of Individual Units in a Deep Neural Network; David Bau,
Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza, Bolei Zhou, and Antonio Torralba;
https://arxiv.org/pdf/2009.05041.pdf

11. Unified Perceptual Parsing for Scene Understanding; Tete Xiao, Yingcheng Liu, Bolei
Zhou, Yuning Jiang, Jian Sun; https://arxiv.org/pdf/1807.10221.pdf

12. Feature Pyramid Networks for Object Detection; Tsung-Yi Lin, Piotr Doll´ar, Ross
Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie;
https://arxiv.org/pdf/1612.03144.pdf

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780634
https://arxiv.org/pdf/1801.04381.pdf
http://netdissect.csail.mit.edu/
https://arxiv.org/pdf/1611.05431v2.pdf
https://arxiv.org/pdf/1409.1556.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://machinelearningmastery.com/how-to-visualize-filters-and-feature-maps-in-convolutional-neural-networks/
https://machinelearningmastery.com/how-to-visualize-filters-and-feature-maps-in-convolutional-neural-networks/
https://pytorch.org/tutorials/advanced/neural_style_tutorial.html#neural-transfer-using-pytorch
https://pytorch.org/tutorials/advanced/neural_style_tutorial.html#neural-transfer-using-pytorch
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/2009.05041.pdf
https://arxiv.org/pdf/1807.10221.pdf
https://arxiv.org/pdf/1612.03144.pdf

13. Image Quality Assessment: From Error Visibility to Structural Similarity; Zhou Wang,
Alan Conrad Bovik, Hamid Rahim Sheikh, Eero P. Simoncelli;
https://www.cns.nyu.edu/pub/eero/wang03-reprint.pdf

https://www.cns.nyu.edu/pub/eero/wang03-reprint.pdf

